

Charlottesville Area Transit Facility Design and Zero Emissions Vehicles

City Council Update July 2023

Today's Purpose

- Update Council at the current project milestone
- Provide an opportunity for Council to ask questions
- Solicit perspective from Council members

Schedule

Feasibility Study and Environmental Assessment

- May 2023 for Staff
- July 2023 for City Council
- Space Program
 - Summer 2023
 - On-site visit: August 2023
- Site Master Plan
 - Fall 2023
- Zero Emissions Bus Transition Plan
 - Fall 2023

Background Information

Going Low- or Zero-Emission

- Charlottesville and Albemarle County implemented a climate action plan
 - Decrease GHG emissions 45% by 2030
 - Reach carbon neutrality by 2050
- There's substantial funding available for transit agencies in transitioning to ZEBs from Federal Sources
- Market and industry trends are moving towards low- and zeroemission vehicles

CAT's System Optimization

- 15 Routes
 - 26 operating blocks*
- Serves Charlottesville and urban areas in Albemarle County
- Operating hours typically 6:30am 11:00pm

* Blocks are equivalent to a vehicle's work cycle

Factors for Consideration

Fuel SourcingVehicle Costs

- Training
- Funding

Maintenance

Sustainability

- Environmental Impact (Local)
- Environmental Impact (Global)
- Resiliency
- Alignment with Local/Regional Policy

Technology Feasibility

Produces Emissions

Zero Emissions

Scenarios

- Current: Diesel-only fleet (hybrid transitioning to clean diesel)
- Battery Electric:
 - 1.62:1 replacement ratio, assuming 40% reduction on range
 - Fast Charging, assuming 1 location with multiple bays at Downtown Transit Hub
 - 1:1 replacement ratio, assuming future technology advancements
- Hydrogen
 - Assumes construction of new cryogenic storage and fueling facility
- CNG/RNG
 - Assumes construction of new fueling facility

BEB Range Analysis

BEB Transition Potential

Routes	BEB Transition Potential	Description		
7s		Has the greatest potential of successful operations under a BEB transition		
2A, 3E, 4, 6, 9		Routes can be completed under strenuous conditions		
2B, 3, 10, Trolley		Not all operation blocks could be transitioned OR routes could not be completed under strenuous conditions		
1, 5, 7, 8, 11		Cannot be transitioned to BEBs with current technology and blocking		

Transition Plan Scenarios

Transition Plan Scenarios: Hydrogen, CNG, BEB (*with* fast charging)

- "ZEB" generic term
- 2025 Two BEBs added to the fleet as expansion vehicles
 - 2028 Dependent on BEB performance, three planned diesel expansion buses could be swapped for ZEBs
- 2040 First year for a potential 100% ZEB fleet
 - Assumes 12-year lifespan for buses

Kimley»Horn

■Diesel ■Hybrid ■BEB ■Gas ■ZEB

Transition Plan Scenarios (continued): BEB (*without* fast charging)

- Total fleet size of 94
 vehicles
 - 1:1.62 Diesel to BEB replacement ratio
 - Replacement ratio based on current block completion analysis
- Total fleet size is dependent on future range improvements for BEBs

Hybrid BEB Gas

Kimley»Horn

Climate and Health Assessment

GHG Emissions

Kimley **»Horn**

- The initial rise in emissions is due to fleet expansion
 - Peak fleet (58) is achieved in 2028
- 2050 reduction in GHG emissions compared to diesel fleet
 - RNG: 151.4%*
 - BEB: 99.4%
 - Green FCEB: 99.0%
 - Grey FCEB: 38.9%
 - CNG: 7.3%

Carbon Monoxide Emissions

- BEB and FCEB transitions eliminate carbon monoxide emissions
- CNG and RNG transitions increase carbon monoxide emissions by 1050% from diesel fleet

easability Study

Other Emissions (2050)

- Emissions based on complete transition and 2050 electrical grid
- FCEB and BEB transitions eliminate local NOx, VOC, and SOx emissions
- CNG and RNG transitions produce the same levels of local pollutants

Comparison of Scenarios

Scenario	Number of Vehicles	Emissions Reductions		Vehicle Costs	Facility	Operational Costs (Fuel +
		Long-Term	Near-Term		Costs	Maintenance)
Current	58 (36 Current)	-		\$29 M	N/A	\$2.2 M
Battery Electric	94	99.4%	6.8%	\$83.5 M	\$6.3 M	\$1.1 M
Battery Electric w/ Fast Charging	63	99.6%	6.8%	\$56 M	\$6.3 M	\$1.2 M
Battery Electric (Low- Estimate)	58	99.6%	6.8%	\$49 M	\$3.7 M	\$1.1 M
Hydrogen	58	99.0%	5.1%	\$64 M	\$5.7 M	\$1.9 M
CNG (RNG)	58	7.3% (151.4%)	3.1% (10.6%)	\$32 M	\$2.3 M	\$1.2 M

Next Steps

- The project will consolidate this discussion into a draft staffrecommended action
- We will document this in our feasibility study for your review and comment
- The project team will present the final revised action to City Council for approval
- The project team will proceed on to conceptual facility design

Questions

Data Backup

Natural Gas Buses

- Range of 400 miles
 - Would complete all of CAT's current blocks
- CAT could perform a 1:1 transition
- Comparable purchase price to diesel buses
 - Average purchase price is \$500,000
- Cheaper to operate and maintain than diesel buses
- No public fueling stations in the area
 - CAT would have to construct an on-site facility
- Natural gas buses are considered low emission

Battery Electric Buses

• Range of 150-350 miles

- Range significantly affected by external factors weather, elevation gain, battery degradation, driver aggression, and bus occupancy can all decrease bus range
- Higher purchase price than diesel and natural gas buses
 - Average purchase price of a BEB is \$860,000*
 - Costs are likely to increase significantly in 2022 and beyond
- Options include depot charging, on-route charging, or a hybrid
 - Depot charging typically takes 5-8 hours for a full charge
 - One charger can service 1 to 4 vehicles
 - On-route charging can extend vehicle range indefinitely

This Photo by Unknown Author is licensed under CC BY-SA

Hydrogen – Fuel Cell Buses

Kimley »Horn

- Range of 260-350 miles
 - Less susceptible to range decreases than BEBs
 - Some models may experience weather related degradation
- Refueling takes around 10 minutes
- CAT would likely be able to perform a 1:1 transition
- Higher purchase price compared to BEBs, natural gas, and diesel buses
 - Average cost for a FCEB is \$1,150,000
- Closest commercial providers are 300 miles away
 - New Kent DE, Kingsport TN, and Charleston WV
 - On-site hydrogen generation and constructing a hydrogen fueling station is a significant capital expenditure
- FCEBs are still in their infancy, especially for buses under 40'

